

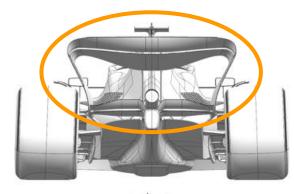
2025 BELGIAN GRAND PRIX 25 - 27 July 2025

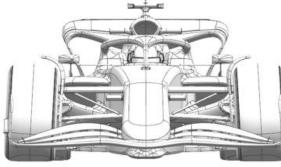
From	The FIA Formula One Media Delegate	Document	6
То	All Teams, All Officials	Date	25 July 2025
		Time	09:50

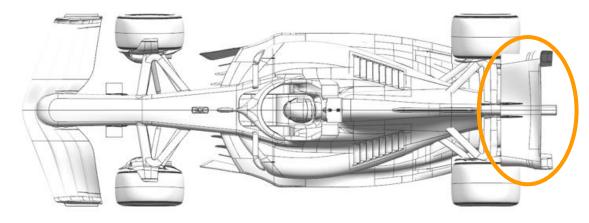
- Title Car Presentation Submissions
- **Description** Car Presentation Submissions
- Enclosed 2025 Belgian Grand Prix Car Presentation Submissions.pdf

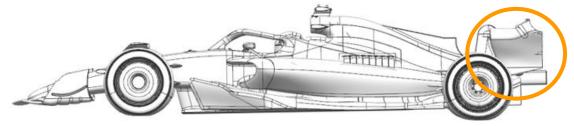
Roman De Lauw

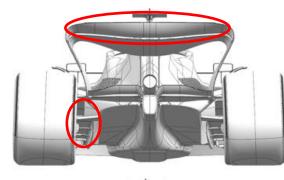
The FIA Formula One Media Delegate


Car Presentation – Belgium Grand Prix

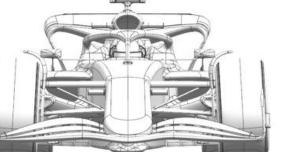

McLaren Formula 1 Team

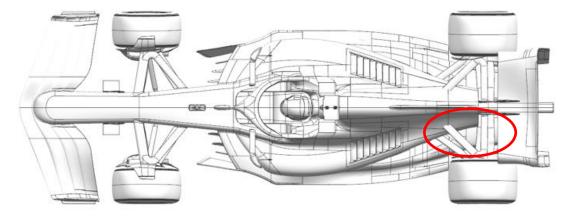

	Updated	Primary reason	Geometric differences compared to	Brief description on how the update works
	component	for update	previous version	(min 20, max 100 words)
1	Rear Wing	Circuit specific - Drag Range	New Low Downforce Rear Wing	Updated version of the low downforce rear wing assembly, improving overall efficiency across a similar drag range, suitable for multiple circuits.

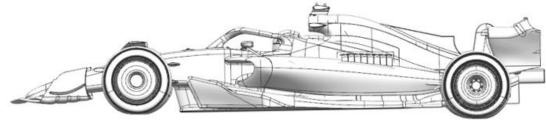


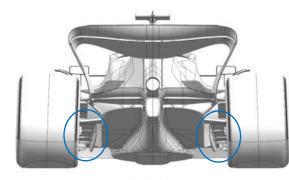


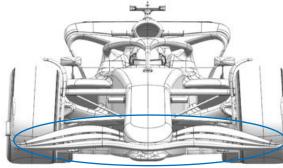
Car Presentation – Belgian Grand Prix *SCUDERIA FERRARI HP*

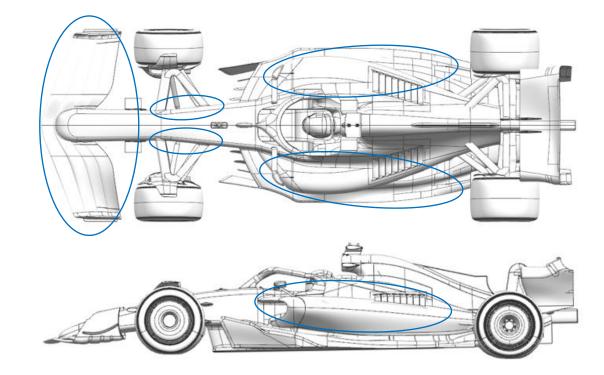

	Updated component	Primary reason for update	Geometric differences compared to previous version	Brief description on how the update works (min 20, max 100 words)
1	Rear Suspension	Performance - Local Load	Updated Rear Suspension geometry and rear corner	This revision of the rear suspension geometry triggered a re-optimisation of wishbone fairings as
2	Rear Corner	Performance - Local Load	winglet elements	well as lower and upper winglet cascades, with the aim to maximize aerodynamic efficiency
3	Rear Wing	Circuit specific - Drag Range	Rear wing flap element trim	Given the aerodynamic efficiency requirements of the Spa-Francorchamps circuit, a lower downforce modulation will be made available, reducing the chord of the rear wing flap element

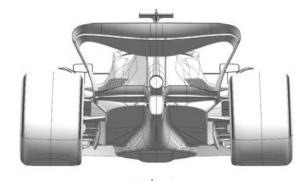


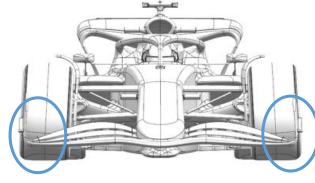


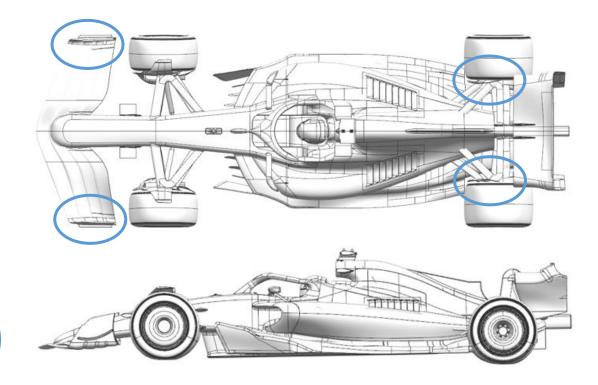


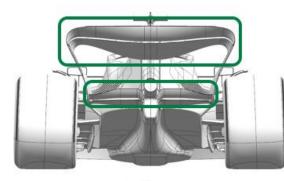

Car Presentation – Belgian Grand Prix Red Bull Racing

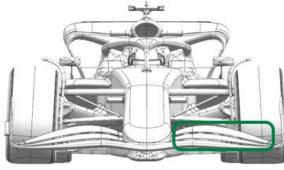

	Updated component	Primary reason for update	Geometric differences compared to previous version	Brief description on how the update works (min 20, max 100 words)
1	Front Wing	Performance - Local Load	First and second elements both have revised camber and incidence. As a consequence of the regulations, elements three and four had to be adapted.	The geometric changes revise the pressure distribution across primarily the first two elements of the assembled wing raising the overall load derived from the assembly.
2	Sidepod Inlet	Reliability	Two inlets merged into one and the upper portion has widened	Noting the tracks approaching which challenge the Power Unit cooling systems, the inlet to the sidepod radiators has been enlarged to exploit better pressure now available.
3	Coke/Engine Cover	Reliability	Changed by consequence of the sidepod inlet revisions to align and then blend to the floor.	Having changed the sidepod inlet and therefore the split lines to the sidepod part of the topbody, the engine cover has been revised to link the sidepod to the floor, maintaining the same cooling exit louvre options. The inboard rear suspension shrouds have been revised to suit the new topbody despite attaching to the bonded gearbox assembly.
4	Front suspension	Flow conditioning	Revised inboard fairings on the top wishbone adding more camber	These fairings blending between suspension and chassis surfaces aid the pressure available at the new sidepod inlet, therefore enhancing the cooling.
5	Rear corner	Performance - Local Load	Mirror changes to the profile of the lower cascade to add camber	The rear wheel bodywork lower cascade wing assembly has locally more camber and a trailing edge trim to the endplate adding load whilst maintaining flow stability.

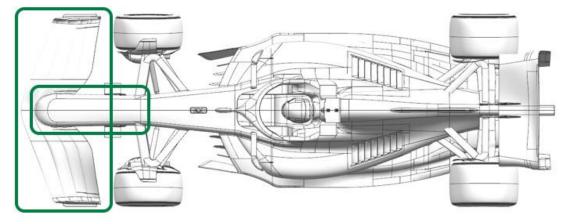


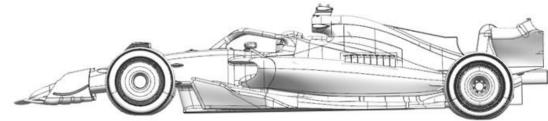

Car Presentation – 2025 Belgian Grand Prix *Mercedes-AMG PETRONAS F1 Team*

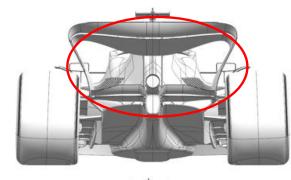

	Updated component	Primary reason for update	Geometric differences compared to previous version	Brief description on how the update works (min 20, max 100 words)
1	Front Wing	Performance – Flow Conditioning	Increased chord of endplate second element.	Increasing the chord on the front wing second element local to the endplate (and reducing the forward element chord), redistributes the tip vorticity and improves tyre squirt and lower wake control.
2	Rear Corner	Performance – Local Load	Drum lip moved inboard.	Moving the drum lip inboard increases vorticity shed off the top edge resulting in more outwash and improved rear tyre upper wake control.

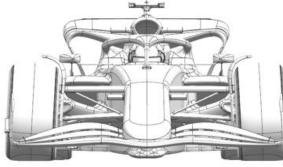


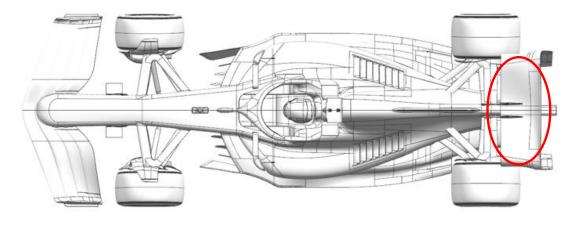

Car Presentation – Belgian Grand Prix Aston Martin Aramco F1 Team

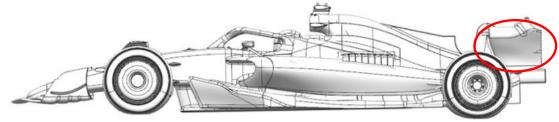

	Updated component	Primary reason for update	Geometric differences compared to previous version	Brief description on how the update works (min 20, max 100 words)
1	Front Wing	Circuit specific - Balance Range	Front wing flap for the front wing used at the previous event with reduced chord.	The front wing flap lowers the loading on the front wing to achieve the necessary balance with the lower rear wing expected to be used at this event.
2	Front Wing	Performance - Local Load	Front wing assy based on a previous version with modified sections to suit the revised nose. At this event it is introduced with a low powered flap.	The front end package improves the flow on the front wing assy generating improved performance through the operating range of the car.
3	Nose	Performance - Local Load	Shorter nose with the wing mounted from the second element.	The front end package improves the flow on the front wing assy generating improved performance through the operating range of the car.
4	Rear Wing	Circuit specific - Drag Range	Upper rear wing with smaller sections for reduced front view area.	The rear wing and beam wing are less loaded than previous options to reduce drag in line with the expected setup for this circuit.
5	Beam Wing	Circuit specific - Drag Range	Single element beam wing.	The rear wing and beam wing are less loaded than previous options to reduce drag in line with the expected setup for this circuit.




Car Presentation – Belgian Grand Prix

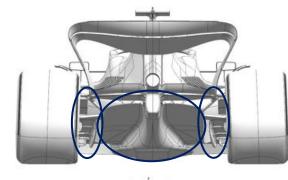

BWT Alpine F1 Team

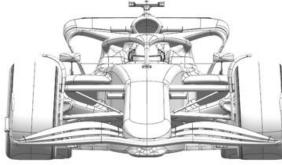

	Updated component	Primary reason for update	Geometric differences compared to previous version	Brief description on how the update works (min 20, max 100 words)
1	Rear wing	Circuit specific – Drag range	Low downforce top rear wing	The top rear wing has been redesigned and is less loaded. This reduces the drag efficiently and is an option for the upcoming tracks.
2	Beam wing	Circuit specific – Drag range	Low downforce rear beam wing	The beam wing has also been updated to offer an efficient alternative rear wing assembly, suitable for high efficiency tracks.

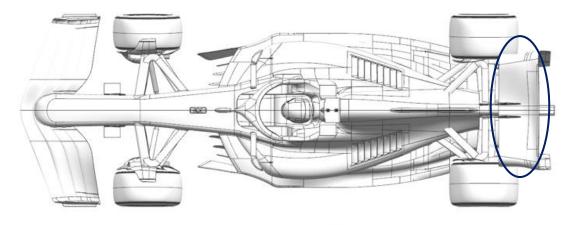


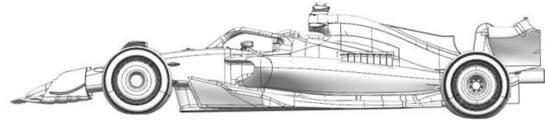
Car Presentation – Belgium Grand Prix *MoneyGram Haas F1 Team*

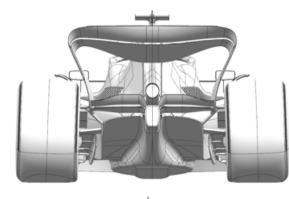
No updates submitted for this event.

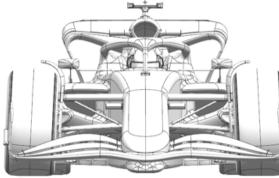


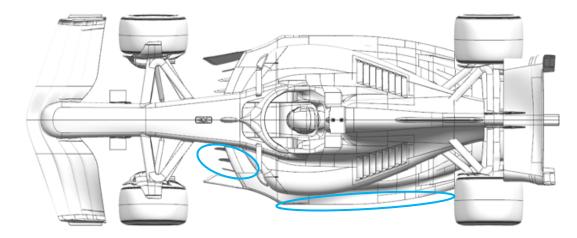

Car Presentation – Belgian Grand Prix Visa Cash App Racing Bulls

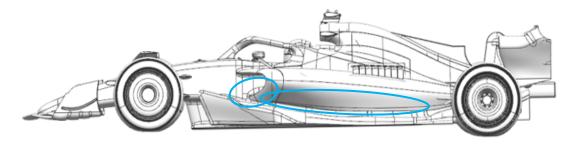

	Updated component	Primary reason for update	Geometric differences compared to previous version	Brief description on how the update works (min 20, max 100 words)
1	Rear Wing	Circuit specific - Drag Range	Updated rear wing profiles.	The upper rear wing has been changed to meet the needs of the target downforce & efficiency level for the circuit.
2	Rear Corner	Performance – Flow Conditioning	The geometry of the winglets on the rear corner has been updated.	The rear brake duct winglets have been modified in order to improve the flow conditioning around the rear of the car.
3	Diffuser	Performance – Flow Conditioning	Diffuser geometry has been updated.	The shape of the diffuser has been revised in order to improve the flow conditioning around the rear of the car.






Car Presentation – Belgian Grand Prix *ATLASSIAN WILLIAMS RACING*


	Updated component	Primary reason for update	Geometric differences compared to previous version	Brief description on how the update works (min 20, max 100 words)
1	Floor Fences	Performance - Flow Conditioning	Each of the forward floor fences have been reprofiled to change their camber. The detailed geometry at the trailing edge of each fence has also been updated.	The revised fence geometries redistribute the balance of loading through the floor fence channels. This increases the local front of floor loading as well as improving the potential for the downstream flow.
2	Floor Edge	Performance - Local Load	The floor edge wing and spat have been reprofiled with a more complex curvature. The lateral hole at the rear of the spat has also been subtly reshaped.	These modified geometries capitalise on the revised local onset flow to not only improve local load along the edge of the floor but also to benefit the inlet condition to the main diffuser.
3	Sidepod Inlet	Performance - Flow Conditioning	The lower lip of the sidepod cooling inlet has been modified and is now lower at the inboard end and higher at the outboard end. This supports the revisions to the bodywork described below whilst maintaining the same inlet cooling flow.	The revisions to the sidepod inlet work in combination with the downstream changes to the floor edges and sidepod coke line. Whilst maintaining the required level of internal PU cooling flow, we have also improved the level of potential flow energy to the rear of the car.
4	Coke/Engine Cover	Performance - Flow Conditioning	There is a deeper undercut to the bodywork, which is married to a modified floor upstand. This is achieved by raising the lower surface of the main sidepod belly. This in turn is achievable because of the changes to the sidepod inlet described above.	The changes to the external sidepod-floor undercut help improve the flow distribution to the floor edge and spat region where it is utilised to improve the local floor load.



Car Presentation – Belgian Grand Prix KICK Sauber F1 Team

No updates submitted for this event.