Big Data - An Automotive Outlook

Graeme Banister, Frost & Sullivan

The Hague 12th September 2013

MOBILITY CONFERNCE VEEK 2013
3
6
9
13

Frost & Sullivan Overview

Our Industry Coverage

Our Automotive & Transportation Practice

Big Data – A Big Deal?

80 Billion Connected Devices By 2020

10 Connected Devices for Every Household by 2020

5 connected devices for every user by 2020

5 billion internet users by 2020

500 devices with unique digital IDs (Internet of things) per square kilometre by 2020

Big Data Business Cases - *Big data to help tap synergies between multiple eco system partners aiding new business use cases*

Digital Retailing

60% leads for car sales are digital leads ; offline auto data for digital ad targeting

Retail inventory management

Inventory planning based on cars driven by people living around retail outlets

Warranty and recall costs

2 – 3 % reduction in a 2-3 billion dollar warranty bill

Traffic management and implementation

Smarter approach in reducing city's traffic congestion using ITS

City infrastructure optimization and development

Decreasing potholes in city's by 30-40 % using apps, improving public sector infrastructure facilities

Diagnostic and repair time management

Reduction in diagnostic time by ~70% and average repair time by ~ 25%

Key Challenges for Big Data Implementation

Harnessing relevant and prioritized vehicle and user data are key answers to industry challenges

Big Data: Relevant & prioritized information-What data you process and what data you don't

Understanding the customer from the web (car vs. lifestyle preferences) – Customer Analytics and CRM

Shortage of skill set for data analytics and data governance – Data Scientists

The need for better data quality - high data transfer cost per vehicle for downloading information

Data privacy issues on the type of data being shared – government limitations and driver concerns

Whose benefitting from the ecosystem – How to monetize data and share value

Big Data Implications for FIA Member Clubs

Volvo Cars Case Study

Market Challenge To understand mechanical performances of Volvo's vehicles under actual driving conditions . Legacy data warehouse systems could not integrate diagnostic readout data with design and warranty information

Solution

- Teradata's system increased raw data availability from 364 GB to 1.7 TB for Volvo's analysts with access to performance exhaustive analytics
- Teradata fused product design, warranty and diagnostic readout data onto a data warehouse
- Volvo can now access a single data set for product design, manufacturing, quality assurance, and warranty - reducing response time and faster decision making

Impact

- Created an immediate cost reduction impact analysis showed returns on initial project costs of 135 percent
- Increased precision in warranty reimbursement, compared mechanical failures with geography based conditions and driving patterns
- Increased capability to diagnose, design and manufacturing problems within current production run

Frost & Sullivan anticipates significant cost savings will be generated by companies creating Big Data partnerships to transform warranty / breakdown service

Hertz Case Study

Hertz

Market Challenge To improve customer service and brand loyalty by better understanding and responding to information returned via customer communication channels (internet, mobile, social, SMS)

Solution

- Hertz collated and understood customer sentiment surveys by centralizing data collection process
- The partnership with IBM has enabled Hertz to understand and analyze unstructured feedback data from their "Premium" members
- Hertz's analysis and response time was halved enabling them to provide real time feedback increasing customer satisfaction

Impact

- Data processing has become centralized , previously customer satisfaction surveys were looked into distinctly at Hertz's 8600 locations
- Radically reduced response time now allows Hertz to gauge and understand insights that was previously not available.
- Example: Hertz identified delays at specific times of day in Philadelphia & so adjusted staffing levels to negate the issue

Frost & Sullivan forecasts significant investment by automotive businesses into Big Data partnerships to identify customer preferences, enhance service and improve brand loyalty

Current Roadside Assistance Experience

17

Future Roadside Assistance Experience

Customer Satisfaction

 Tailored Service

